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Hele-Shaw problem

Model of the pressure-driven︸ ︷︷ ︸
~v=−Du

flow of incompressible liquid︸ ︷︷ ︸
div~v=0

in

Hele-Shaw cell: two parallel plates close to each other

porous medium
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Hele-Shaw problem

space dimension n ≥ 2

Ω ⊂ Rn domain with compact Lipschitz boundary

Q = Ω× (0,T ],

find u : Q → [0,∞) satisfying formally
−∆xu(x , t) = 0 in {u > 0} ∩ Q

Vν(x , t) = g(x , t) |Dxu(x , t)| on ∂{u > 0} ∩ Q
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Hele-Shaw problem

(Initial data) wet region {u > 0} = Ω0 at t = 0

(Boundary data) u(x , t) = ψ(x , t) > 0 on ∂Ω

∂Ω

Ω0

u(·, t) > 0

Γt

Γ0

ν

u = ψ

u(·, t) ≡ 0
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Hele-Shaw problem: homogenization

find uε : Q → [0,∞) satisfying formally
−∆uε(x , t) = 0 in {uε > 0} ∩ Q

Vν(x , t) = g( x
ε ,

t
ε ) |Duε(x , t)| on ∂{uε > 0} ∩ Q

with

(initial data) {uε > 0} = Ω0 at t = 0

(boundary data) uε(x , t) = ψ(x , t) on ∂Ω.

Does uε have a limit as ε→ 0?

What is it?
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Assumptions on g

For existence of solutions:

(regularity)
g ∈ Lip(Rn × R)

(non-degeneracy) there exist constants m,M such that

0 < m ≤ g(x , t) ≤ M ∀(x , t) ∈ Rn × R

To see averaging as ε→ 0:

(periodicity) g is Zn+1-periodic, i.e.,

g(x + k, t + l) = g(x , t) ∀(x , t) ∈ Rn × R,∀(k, l) ∈ Zn × Z
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Homogenized problem of Hele-Shaw

If the problem homogenizes, uε should converge in some sense to the
solution of


−∆u = 0 in {u > 0} ∩ Q

Vν = r(Du) on ∂{u > 0} ∩ Q

Is the problem well-posed?
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Well-posedness of homogenized problem

Assume that r(q) satisfies:

(non-degeneracy) there exist constants m,M such that 0 < m ≤ M
such that

m |q| ≤ r(q) ≤ M |q| ∀q ∈ Rn

(ellipticity)
r∗(q) ≤ r∗(aq) q ∈ Rn, a > 1
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Well-posedness of homogenized problem

Theorem (P. ’12’)

Let f (x , t, q) = g(x , t) |q| or f (x , t, q) = r(q). Then the Hele-Shaw-type
problem 

−∆u = 0 in {u > 0} ∩ Q

Vν = f (x , t,Du) on ∂{u > 0} ∩ Q

has unique viscosity solution for any sufficiently regular initial and
boundary data.

extends the previous results by Kim ’04,’07, using ideas from Kim & P. ’12
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Homogenization result

Theorem (P. ’12)

Suppose that g(x , t) is positive, Lipschitz, Z n+1-periodic and that initial
and boundary data are regular so that well-posedness theorem applies.

Then there exists r(q) : Rn → [0,∞) that is (non-degenerate) and
(elliptic) such that the solutions uε of{

−∆uε = 0 in {uε > 0}
Vν = g( x

ε ,
t
ε ) |Duε| on ∂{uε > 0}

with given boundary/initial data converge as ε→ 0 in the sense of
half-relaxed limits to the solution u of{

−∆u = 0 in {u > 0}
Vν = r(Du) on ∂{u > 0}

with the same boundary data.
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Homogenized velocity r(q)

What is the form of r(q)?
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Homogenized velocity r(q)

g independent of time: g(x , t) = g(x)

I. Kim ’07 (periodic), I. Kim & A. Mellet ’09 (random), P. ’11
(t →∞)

r(q) =
1〈
1
g

〉
︸ ︷︷ ︸
constant

|q|
〈

1

g

〉
=

∫
[0,1]n

1

g(x)
dx

{
−∆uε = 0

Vν = g( x
ε ) |Duε|

ε→0−→

{
−∆u = 0

Vν = 1

〈 1g 〉
|Du|
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Homogenized velocity r(q) in 1D

one dimensional problem: n = 1

x(t)0

Ω = (0,∞)
Ω0 = (−∞, x0)

u(0, t) = ψ(t)

x

u

ν

x0

wet dry

harmonic functions are linear ⇒ |Du| is given by ψ(t)/x(t)

Hele-Shaw problem reduces to an ODE for the position xε(t) of the
free boundary (a point).

ẋε(t) = g

(
xε(t)

ε
,

t

ε

)
ψ(t)

xε(t)
, xε(0) = x0
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ẋε(t) = g

(
xε(t)

ε
,

t

ε

)
ψ(t)

xε(t)
, xε(0) = x0

Norbert Pozar Homogenization of a Hele-Shaw-type problem in periodic time-dependent media



Homogenized velocity r(q) in 1D

one dimensional problem: n = 1

x(t)0

Ω = (0,∞)
Ω0 = (−∞, x0)

u(0, t) = ψ(t)

x

u

ν

x0

wet dry

harmonic functions are linear ⇒ |Du| is given by ψ(t)/x(t)

Hele-Shaw problem reduces to an ODE for the position xε(t) of the
free boundary (a point).
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Homogenized velocity r(q) in 1D

Homogenization of ODEs:

ẋε(t) = g

(
xε(t)

ε
,

t

ε

)
ψ(t)

xε(t)
, xε(0) = x0

Piccinini ’77, Ibrahim & Monneau ’08

xε ⇒ x locally uniformly as ε→ 0

x(t) is the solution of

ẋ(t) = r

(
ψ(t)

x(t)

)
, x(0) = x0

no explicit formula for r(q), only estimate
|q|min g ≤ r(q) ≤ |q|max g
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ẋ(t) = r

(
ψ(t)

x(t)

)
, x(0) = x0

no explicit formula for r(q), only estimate
|q|min g ≤ r(q) ≤ |q|max g

Norbert Pozar Homogenization of a Hele-Shaw-type problem in periodic time-dependent media



Homogenized velocity r(q): example

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5

0.5

1.0

1.5

2.0

g(x , t) = sin2(π(x − t)) + 1
−q

r(q)

Vν = r(q) = const

velocity pining effect
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Homogenized velocity r(q): example

- 4 - 2 2 4

1

2

3

4

g(x , t) = sin(2π(x − 3t))sin(2π(x + 2t)) + 1.1

r(q)

−q
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Identification of r(q)

Standard homogenization in periodic setting:

Hamilton-Jacobi equations: Lions, Papanicolau, Varadhan ’87
(unpublished), Evans ’91

elliptic equations: Evans ’92

1 identify the candidate for the limit operator by finding a corrector –
a global periodic solution

∀P ∈ Rn ∃periodic v , ∃!H(P) H(Dv + P, x) = H(P)

2 prove that the uniform limit solves the limit equation: perturbed
test function method

This approach does not apply to the Hele-Shaw problem!
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Identification of r(q)

Idea: use an obstacle problem

elliptic equations (random): Caffarelli, Souganidis & Wang ’05

Hele-Shaw, contact angle dynamics (periodic): Kim ’07–
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Identification of r(q)

Suppose that the problem homogenizes: uε ⇒ u uniformly, and the
free boundaries converge uniformly, where u is the solution of{

−∆u = 0

Vν = r(Du)
(HP)

(HP) has traveling wave solutions: for q ∈ Rn \ {0}, r > 0

Pq,r (x , t) = |q| (rt − x · ν)+, ν =
−q

|q|

P

ν

Vν = r

Pq,r is a solution if and only if r = r(q)

Norbert Pozar Homogenization of a Hele-Shaw-type problem in periodic time-dependent media



Identification of r(q)

Suppose that the problem homogenizes: uε ⇒ u uniformly, and the
free boundaries converge uniformly, where u is the solution of{

−∆u = 0

Vν = r(Du)
(HP)

(HP) has traveling wave solutions: for q ∈ Rn \ {0}, r > 0

Pq,r (x , t) = |q| (rt − x · ν)+, ν =
−q

|q|

P

ν

Vν = r

Pq,r is a solution if and only if r = r(q)

Norbert Pozar Homogenization of a Hele-Shaw-type problem in periodic time-dependent media



Identification of r(q)

For given q 6= 0, find a solution uε;q on Rn × [0,∞) of the ε-problem
for every ε > 0 with initial data

uε;q = (−x · q)+ at t = 0.

If r < r(q) then Pq,r evolves “slower” than uε;q ∼ Pq,r(q) for ε small.

If r > r(q) then Pq,r evolves “faster” than uε;q ∼ Pq,r(q) for ε small.

What does slower and faster mean?
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Obstacle problem

Use Pq,r as an obstacle:

Domain: Qq = Cq × [0,∞)
Cq ... cylinder with axis in the direction −q

Cq

{Pq,r > 0}
t = 0

−q

Solution:

uε;q,r = sup {v : subsolution of ε-problem on Qq, v ≤ Pq,r}

uε;q,r = inf {v : supersolution of ε-problem on Qq, v ≥ Pq,r}

Nice properties:

uε;q,r ... subsolution, uε;q,r ... supersolution
solutions when not touching the obstacle
uε;q,r = uε;q,r = Pq,r on the boundary ∂Qq
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Flatness

We introduce a new quantity: flatness of the solution

measures how much the solution obstacle problem detaches from the
obstacle

indicator of how good our guess of r is for a given slope

Φε;q,r

flatness of
uε;q,r

t = 1
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Candidates for r(q)

t = 0

−q

P

q

uε;q,r = Pq,r

∂{uε;q,r > 0}
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Candidates for r(q)

t = 0

−q

P

q

t = 1

uε;q,r = Pq,r

uε;q,r not detached

⇒ r too small

∂{uε;q,r > 0}
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Candidates for r(q)

t = 0

−q

P

q

t = 1

uε;q,r = Pq,r

critical
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Cone flatness

Can the free boundaries of uε;q,r or uε;q,r have long thin fingers?

Lemma (P. ’12)

There exists K > 0, a constant independent of ε, such that for ε > 0 small

the free boundaries of uε;q,r and uε;q,r are in between cones Kε |ln ε|1/2
apart.
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Cone flatness

∼ ε |ln ε|1/2
∼ εβ
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Local comparison principle

We can compare solutions far away from the boundary for short time even
if the boundary data is not ordered.

Lemma (Kim ’07, P. ’12)

Let β ∈ (4/5, 1]. Suppose that r1 > r2 > 0, a > 1 and q 6= 0 and that ε is
sufficiently small. Then

uε;q,r1 and uε;aq,r2

cannot be both εβ-flat.
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Critical flatness εβ

The critical value of flatness is

Φε;q,r ∼ εβ ∼ Φε;q,r

for some fixed
β ∈ (4/5, 1).
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Candidates for r(q)

Flatness provides two candidates for the homogenized velocity r(q) for any
q 6= 0:

upper velocity

r(q) = sup

{
r > 0 : lim sup

ε→0
ε−βΦε;q,r ≥ 1

}
lower velocity

r(q) = inf

{
r > 0 : lim sup

ε→0
ε−βΦε;q,r ≥ 1

}
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Tools

Finally, prove that r(q) and r(q) have the desired properties using:

scaling

monotonicity (Birkhoff property)

local comparison principle

cone flatness

In particular,

(semi-continuity)
r∗ = r , r = r∗

(ellipticity)
r(q) ≤ r(aq) ∀q ∈ Rn, a > 1

We set r(q) = r(q).

⇒ u solves

{
−∆u = 0

Vν = r(Du)

Norbert Pozar Homogenization of a Hele-Shaw-type problem in periodic time-dependent media



Tools

Finally, prove that r(q) and r(q) have the desired properties using:

scaling

monotonicity (Birkhoff property)

local comparison principle

cone flatness

In particular,

(semi-continuity)
r∗ = r , r = r∗

(ellipticity)
r(q) ≤ r(aq) ∀q ∈ Rn, a > 1

We set r(q) = r(q). ⇒ u solves

{
−∆u = 0

Vν = r(Du)

Norbert Pozar Homogenization of a Hele-Shaw-type problem in periodic time-dependent media



Open problems

continuity, Hölder regularity of r(q)?

rate of convergence

random environments (spatial or spatio-temporal): open

extension to non-monotone problems: Hele-Shaw with mean
curvature, contact angle dynamics etc.
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The end

Thank you!
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Monotonicity

The solutions of the obstacle problem has a natural monotonicity:

a ∈ (0, 1)

Hele-Shaw problem has natural hyperbolic scaling:

uε;q,r (x , t) 7→ auε;q,r

(x

a
,

t

a

)
is solution of the obstacle problem with ε′ = aε on aQq ⊂ Qq.

Pq,r is invariant

Solution of the obstacle problem on a smaller domain is more
“extreme”; therefore

auε;q,r

(x

a
,

t

a

)
≤ uaε;q,r (x , t)

By periodicity:

auε;q,r

(x

a
,

t

a

)
≤ uaε;q,r (x − k, t − l) for (k , l) ∈ aε(Zn × Z)

as long as aQq ⊂ Qq + (k, l) and the obstacles are ordered.
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Monotonicity

uε;q,r (x , t)

Monotonicity is also known as Birkhoff property.
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(
x
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t
a

)
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