Homogenization of a Hele-Shaw-type problem in periodic time-dependent media

Norbert Pozar

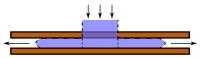
University of Tokyo npozar@ms.u-tokyo.ac.jp

KIAS, Seoul, November 30, 2012

伺い イラト イラト

Model of the pressure-driven flow of incompressible liquid in $\vec{v}=-Du$ $\vec{v}=-Du$

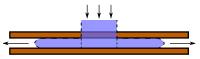
• Hele-Shaw cell: two parallel plates close to each other



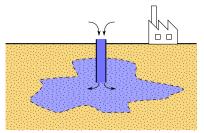
B b

Model of the pressure-driven flow of incompressible liquid in $\vec{v}=-Du$ $\vec{v}=-Du$

• Hele-Shaw cell: two parallel plates close to each other



• porous medium



- space dimension $n \ge 2$
- $\Omega \subset \mathbb{R}^n$ domain with compact Lipschitz boundary
- $Q = \Omega \times (0, T]$,

イロト イポト イヨト イヨト

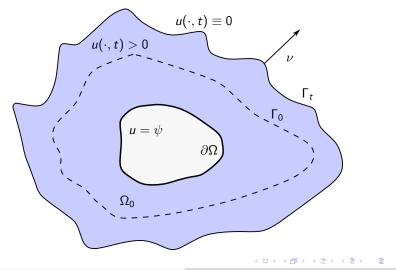
- space dimension $n \ge 2$
- $\Omega \subset \mathbb{R}^n$ domain with compact Lipschitz boundary

•
$$Q = \Omega \times (0, T]$$
,

• find $u : \overline{Q} \to [0, \infty)$ satisfying formally $\begin{cases} -\Delta_x u(x, t) = 0 & \text{in } \{u > 0\} \cap Q \\ \\ V_{\nu}(x, t) = g(x, t) |D_x u(x, t)| & \text{on } \partial \{u > 0\} \cap Q \end{cases}$

・ 同 ト ・ ヨ ト ・ ヨ ト

- (Initial data) wet region $\{u > 0\} = \Omega_0$ at t = 0
- (Boundary data) $u(x,t) = \psi(x,t) > 0$ on $\partial \Omega$



Hele-Shaw problem: homogenization

• find
$$u^{arepsilon}:\overline{Q}
ightarrow [0,\infty)$$
 satisfying formally

$$\begin{cases} -\Delta u^{\varepsilon}(x,t) = 0 & \text{ in } \{u^{\varepsilon} > 0\} \cap Q \\ \\ V_{\nu}(x,t) = g(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}) |Du^{\varepsilon}(x,t)| & \text{ on } \partial \{u^{\varepsilon} > 0\} \cap Q \end{cases}$$

with

• (initial data)
$$\{u^{arepsilon}>0\}=\Omega_0$$
 at $t=0$

• (boundary data) $u^{\varepsilon}(x,t) = \psi(x,t)$ on $\partial \Omega$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Hele-Shaw problem: homogenization

• find
$$u^{\varepsilon}: \overline{Q} \to [0,\infty)$$
 satisfying formally

$$\begin{cases} -\Delta u^{\varepsilon}(x,t) = 0 & \text{ in } \{u^{\varepsilon} > 0\} \cap Q \\ \\ V_{\nu}(x,t) = g(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}) |Du^{\varepsilon}(x,t)| & \text{ on } \partial \{u^{\varepsilon} > 0\} \cap Q \end{cases}$$

with

• (initial data)
$$\{u^arepsilon>0\}=\Omega_0$$
 at $t=0$

• (boundary data) $u^{\varepsilon}(x,t) = \psi(x,t)$ on $\partial \Omega$.

Does u^{ε} have a limit as $\varepsilon \to 0$?

(人間) システン イラン

ъ.

Hele-Shaw problem: homogenization

• find
$$u^{arepsilon}:\overline{Q}
ightarrow [0,\infty)$$
 satisfying formally

$$\begin{cases} -\Delta u^{\varepsilon}(x,t) = 0 & \text{in } \{u^{\varepsilon} > 0\} \cap Q \\ \\ V_{\nu}(x,t) = g(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}) |Du^{\varepsilon}(x,t)| & \text{on } \partial \{u^{\varepsilon} > 0\} \cap Q \end{cases}$$

with

• (initial data)
$$\{u^{arepsilon}>0\}=\Omega_0$$
 at $t=0$

• (boundary data) $u^{\varepsilon}(x,t) = \psi(x,t)$ on $\partial \Omega$.

Does
$$u^{\varepsilon}$$
 have a limit as $\varepsilon \to 0$?

What is it?

・ 同 ト ・ ヨ ト ・ ヨ ト

For existence of solutions:

• (regularity)

 $g \in \operatorname{Lip}(\mathbb{R}^n \times \mathbb{R})$

• (non-degeneracy) there exist constants m, M such that

 $0 < m \le g(x,t) \le M$ $\forall (x,t) \in \mathbb{R}^n \times \mathbb{R}$

For existence of solutions:

• (regularity)

 $g \in \operatorname{Lip}(\mathbb{R}^n \times \mathbb{R})$

• (non-degeneracy) there exist constants m, M such that

 $0 < m \le g(x,t) \le M$ $\forall (x,t) \in \mathbb{R}^n \times \mathbb{R}$

To see averaging as $\varepsilon \to 0$:

• (periodicity) g is \mathbb{Z}^{n+1} -periodic, i.e.,

g(x+k,t+l) = g(x,t) $\forall (x,t) \in \mathbb{R}^n \times \mathbb{R}, \forall (k,l) \in \mathbb{Z}^n \times \mathbb{Z}$

Homogenized problem of Hele-Shaw

If the problem homogenizes, u^{ε} should converge in some sense to the solution of

$$\begin{cases} -\Delta u = 0 & \text{ in } \{u > 0\} \cap Q \\ \\ V_{\nu} = r(Du) & \text{ on } \partial\{u > 0\} \cap Q \end{cases}$$

< 回 > < 三 > < 三 >

If the problem homogenizes, u^{ε} should converge in some sense to the solution of

$$\begin{cases} -\Delta u = 0 & \text{ in } \{u > 0\} \cap Q \\ \\ V_{\nu} = r(Du) & \text{ on } \partial\{u > 0\} \cap Q \end{cases}$$

Is the problem well-posed?

< 同 > < 三 > < 三 >

Assume that r(q) satisfies:

 (non-degeneracy) there exist constants m, M such that 0 < m ≤ M such that

$$m|q| \leq r(q) \leq M|q| \qquad \forall q \in \mathbb{R}^n$$

(ellipticity)

$$r^*(q) \leq r_*(aq) \qquad q \in \mathbb{R}^n, \; a > 1$$

伺い イラト イラト

Theorem (P. '12')

Let f(x, t, q) = g(x, t) |q| or f(x, t, q) = r(q). Then the Hele-Shaw-type problem

$$\begin{cases} -\Delta u = 0 & \text{ in } \{u > 0\} \cap Q \\ \\ V_{\nu} = f(x, t, Du) & \text{ on } \partial\{u > 0\} \cap Q \end{cases}$$

has unique viscosity solution for any sufficiently regular initial and boundary data.

extends the previous results by Kim '04,'07, using ideas from Kim & P. '12

マロト イラト イラト

Theorem (P. '12)

Suppose that g(x, t) is positive, Lipschitz, Z^{n+1} -periodic and that initial and boundary data are regular so that well-posedness theorem applies.

伺 ト イヨト イヨト

Theorem (P. '12)

Suppose that g(x, t) is positive, Lipschitz, Z^{n+1} -periodic and that initial and boundary data are regular so that well-posedness theorem applies.

Then there exists $r(q) : \mathbb{R}^n \to [0, \infty)$ that is (non-degenerate) and (elliptic) such that the solutions u^{ε} of

$$\begin{cases} -\Delta u^{\varepsilon} = 0 & \text{in } \{u^{\varepsilon} > 0\} \\ V_{\nu} = g(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}) |Du^{\varepsilon}| & \text{on } \partial\{u^{\varepsilon} > 0\} \end{cases}$$

with given boundary/initial data converge as $\varepsilon \to 0$ in the sense of half-relaxed limits to the solution u of

$$\begin{cases} -\Delta u = 0 & \text{in } \{u > 0\} \\ V_{\nu} = r(Du) & \text{on } \partial\{u > 0\} \end{cases}$$

with the same boundary data.

What is the form of r(q)?

・ 同 ト ・ ヨ ト ・ ヨ ト

Homogenized velocity r(q)

g independent of time: g(x, t) = g(x)

(人間) システン イラン

Homogenized velocity r(q)

g independent of time: g(x, t) = g(x)

• I. Kim '07 (periodic), I. Kim & A. Mellet '09 (random), P. '11 $(t
ightarrow \infty)$

$$r(q) = \frac{1}{\underbrace{\left\langle \frac{1}{g} \right\rangle}_{\text{constant}}} |q| \qquad \left\langle \frac{1}{g} \right\rangle = \int_{[0,1]^n} \frac{1}{g(x)} dx$$

Norbert Pozar Homogenization of a Hele-Shaw-type problem in periodic time-dependent med

(人間) システン イラン

Homogenized velocity r(q)

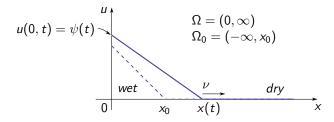
g independent of time: g(x, t) = g(x)

• I. Kim '07 (periodic), I. Kim & A. Mellet '09 (random), P. '11 $(t
ightarrow \infty)$

$$r(q) = \underbrace{\frac{1}{\left\langle \frac{1}{g} \right\rangle}}_{\text{constant}} |q| \qquad \left\langle \frac{1}{g} \right\rangle = \int_{[0,1]^n} \frac{1}{g(x)} dx$$

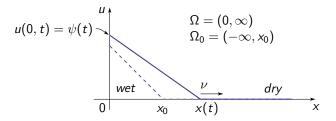
 $\begin{cases} -\Delta u^{\varepsilon} = 0 & \qquad \varepsilon \to 0 \\ V_{\nu} = g\left(\frac{x}{\varepsilon}\right) |Du^{\varepsilon}| & \qquad \overset{\varepsilon \to 0}{\longrightarrow} & \qquad \begin{cases} -\Delta u = 0 \\ V_{\nu} = \frac{1}{\left(\frac{1}{g}\right)} |Du| \end{cases}$

one dimensional problem: n = 1



伺い イラト イラト

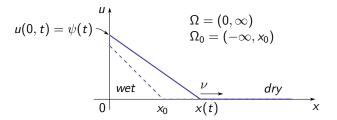
one dimensional problem: n = 1



• harmonic functions are linear $\Rightarrow |Du|$ is given by $\psi(t)/x(t)$

同 ト イ ヨ ト イ ヨ ト

one dimensional problem: n = 1



- harmonic functions are linear $\Rightarrow |Du|$ is given by $\psi(t)/x(t)$
- Hele-Shaw problem reduces to an ODE for the position x^ε(t) of the free boundary (a point).

$$\dot{x}^{\varepsilon}(t) = g\left(rac{x^{\varepsilon}(t)}{\varepsilon}, rac{t}{\varepsilon}
ight)rac{\psi(t)}{x^{\varepsilon}(t)}, \qquad x^{\varepsilon}(0) = x_0$$

Homogenization of ODEs:

$$\dot{x}^{\varepsilon}(t) = g\left(\frac{x^{\varepsilon}(t)}{\varepsilon}, \frac{t}{\varepsilon}\right) \frac{\psi(t)}{x^{\varepsilon}(t)}, \qquad x^{\varepsilon}(0) = x_0$$

Homogenization of ODEs:

$$\dot{x}^{\varepsilon}(t) = g\left(rac{x^{\varepsilon}(t)}{\varepsilon},rac{t}{\varepsilon}
ight)rac{\psi(t)}{x^{\varepsilon}(t)}, \qquad x^{\varepsilon}(0) = x_0$$

• Piccinini '77, Ibrahim & Monneau '08

$$x^{arepsilon}
ightarrow x$$
 locally uniformly as $arepsilon
ightarrow 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

Homogenization of ODEs:

$$\dot{x}^{\varepsilon}(t) = g\left(rac{x^{\varepsilon}(t)}{\varepsilon}, rac{t}{\varepsilon}
ight)rac{\psi(t)}{x^{\varepsilon}(t)}, \qquad x^{\varepsilon}(0) = x_0$$

• Piccinini '77, Ibrahim & Monneau '08

$$x^{\varepsilon} \rightrightarrows x$$
 locally uniformly as $\varepsilon \rightarrow 0$

• x(t) is the solution of

$$\dot{x}(t) = r\left(\frac{\psi(t)}{x(t)}\right), \qquad x(0) = x_0$$

< 同 > < 三 > < 三 >

Homogenization of ODEs:

$$\dot{x}^{\varepsilon}(t) = g\left(rac{x^{\varepsilon}(t)}{arepsilon},rac{t}{arepsilon}
ight)rac{\psi(t)}{x^{arepsilon}(t)}, \qquad x^{arepsilon}(0) = x_0$$

• Piccinini '77, Ibrahim & Monneau '08

$$x^{\varepsilon} \rightrightarrows x$$
 locally uniformly as $\varepsilon \rightarrow 0$

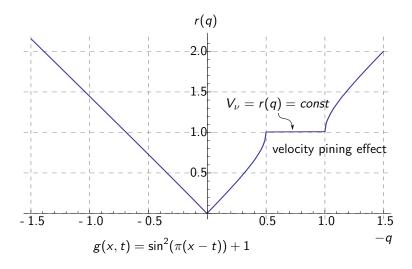
• x(t) is the solution of

$$\dot{x}(t) = r\left(\frac{\psi(t)}{x(t)}\right), \qquad x(0) = x_0$$

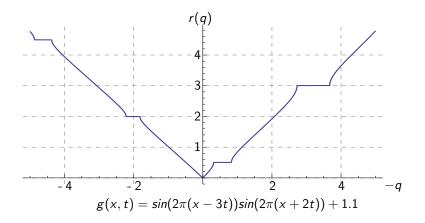
• no explicit formula for r(q), only estimate $|q| \min g \le r(q) \le |q| \max g$

イボト イラト イラト

Homogenized velocity r(q): example



Homogenized velocity r(q): example



Norbert Pozar Homogenization of a Hele-Shaw-type problem in periodic time-dependent med

Standard homogenization in periodic setting:

- Hamilton-Jacobi equations: Lions, Papanicolau, Varadhan '87 (unpublished), Evans '91
- elliptic equations: Evans '92

< 回 > < 三 > < 三 >

Standard homogenization in periodic setting:

- Hamilton-Jacobi equations: Lions, Papanicolau, Varadhan '87 (unpublished), Evans '91
- elliptic equations: Evans '92
- identify the candidate for the limit operator by finding a corrector a global periodic solution

$$\forall P \in \mathbb{R}^n \quad \exists \text{periodic } v, \exists ! \overline{H}(P) \qquad H(Dv + P, x) = \overline{H}(P)$$

Standard homogenization in periodic setting:

- Hamilton-Jacobi equations: Lions, Papanicolau, Varadhan '87 (unpublished), Evans '91
- elliptic equations: Evans '92
- identify the candidate for the limit operator by finding a corrector a global periodic solution

 $\forall P \in \mathbb{R}^n$ $\exists \text{periodic } v, \exists ! \overline{H}(P)$ $H(Dv + P, x) = \overline{H}(P)$

Prove that the uniform limit solves the limit equation: perturbed test function method

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Standard homogenization in periodic setting:

- Hamilton-Jacobi equations: Lions, Papanicolau, Varadhan '87 (unpublished), Evans '91
- elliptic equations: Evans '92
- identify the candidate for the limit operator by finding a corrector a global periodic solution

 $\forall P \in \mathbb{R}^n \quad \exists \text{periodic } v, \exists ! \overline{H}(P) \qquad H(Dv + P, x) = \overline{H}(P)$

Prove that the uniform limit solves the limit equation: perturbed test function method

This approach does not apply to the Hele-Shaw problem!

Idea: use an obstacle problem

- elliptic equations (random): Caffarelli, Souganidis & Wang '05
- Hele-Shaw, contact angle dynamics (periodic): Kim '07-

- 4 同 2 4 日 2 4 日 2

• Suppose that the problem homogenizes: $u^{\varepsilon} \rightrightarrows u$ uniformly, and the free boundaries converge uniformly, where u is the solution of

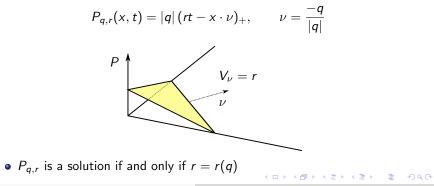
$$\begin{cases} -\Delta u = 0 \\ V_{\nu} = r(Du) \end{cases}$$
(HP)

イロト イポト イヨト イヨト

• Suppose that the problem homogenizes: $u^{\varepsilon} \rightrightarrows u$ uniformly, and the free boundaries converge uniformly, where u is the solution of

$$\begin{cases} -\Delta u = 0\\ V_{\nu} = r(Du) \end{cases}$$
(HP)

• (HP) has traveling wave solutions: for $q \in \mathbb{R}^n \setminus \{0\}$, r > 0



 For given q ≠ 0, find a solution u_{ε;q} on ℝⁿ × [0,∞) of the ε-problem for every ε > 0 with initial data

$$u_{arepsilon;oldsymbol{q}}=(-x\cdot q)_+$$
 at $t=0.$

イロト イポト イヨト イヨト

 For given q ≠ 0, find a solution u_{ε;q} on ℝⁿ × [0,∞) of the ε-problem for every ε > 0 with initial data

$$u_{arepsilon;oldsymbol{q}}=(-x\cdot q)_+$$
 at $t=0.$

• If r < r(q) then $P_{q,r}$ evolves "slower" than $u_{\varepsilon;q} \sim P_{q,r(q)}$ for ε small.

イロン 不同 とくほう イヨン

 For given q ≠ 0, find a solution u_{ε;q} on ℝⁿ × [0,∞) of the ε-problem for every ε > 0 with initial data

$$u_{arepsilon;oldsymbol{q}}=(-x\cdot q)_+ \qquad ext{at }t=0.$$

- If r < r(q) then $P_{q,r}$ evolves "slower" than $u_{\varepsilon;q} \sim P_{q,r(q)}$ for ε small.
- If r > r(q) then $P_{q,r}$ evolves "faster" than $u_{\varepsilon;q} \sim P_{q,r(q)}$ for ε small.

 For given q ≠ 0, find a solution u_{ε;q} on ℝⁿ × [0,∞) of the ε-problem for every ε > 0 with initial data

$$u_{arepsilon; q} = (-x \cdot q)_+$$
 at $t = 0$.

If r < r(q) then P_{q,r} evolves "slower" than u_{ε;q} ~ P_{q,r(q)} for ε small.
If r > r(q) then P_{q,r} evolves "faster" than u_{ε;q} ~ P_{q,r(q)} for ε small.

What does slower and faster mean?

イヨン イヨン イヨン

Obstacle problem

Use $P_{q,r}$ as an obstacle:

• Domain:
$$Q_q = C_q \times [0, \infty)$$

 C_q ... cylinder with axis in the direction $-q$
 $C_q \qquad -q$
 $\{P_{q,r} > 0\}$
 $t = 0$

Obstacle problem

Use $P_{q,r}$ as an obstacle:

• Domain:
$$Q_q = C_q \times [0, \infty)$$

 C_q ... cylinder with axis in the direction $-q$
 $C_q \qquad -q$
 $\{P_{q,r} > 0\}$
 $t = 0$

Solution:

 $\overline{u}_{\varepsilon;q,r} = \sup \{ v : \text{subsolution of } \varepsilon \text{-problem on } Q_q, v \leq P_{q,r} \}$ $\underline{u}_{\varepsilon;q,r} = \inf \{ v : \text{supersolution of } \varepsilon \text{-problem on } Q_q, v \geq P_{q,r} \}$

Obstacle problem

Use $P_{q,r}$ as an obstacle:

• Domain:
$$Q_q = C_q \times [0, \infty)$$

 C_q ... cylinder with axis in the direction $-q$
 $C_q \qquad -q$
 $\{P_{q,r} > 0\}$
 $t = 0$

Solution:

 $\overline{u}_{\varepsilon;q,r} = \sup \left\{ v : \text{subsolution of } \varepsilon\text{-problem on } Q_q, \ v \leq P_{q,r} \right\}$

 $\underline{u}_{\varepsilon;q,r} = \inf \left\{ v : \text{supersolution of } \varepsilon \text{-problem on } Q_q, \ v \geq P_{q,r} \right\}$

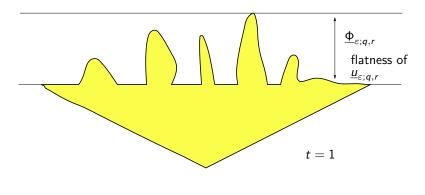
Nice properties:

- $\overline{u}_{\varepsilon;q,r}$... subsolution, $\underline{u}_{\varepsilon;q,r}$... supersolution
- solutions when not touching the obstacle
- $\overline{u}_{\varepsilon;q,r} = \underline{u}_{\varepsilon;q,r} = P_{q,r}$ on the boundary ∂Q_q

Flatness

We introduce a new quantity: flatness of the solution

- measures how much the solution obstacle problem detaches from the obstacle
- indicator of how good our guess of r is for a given slope

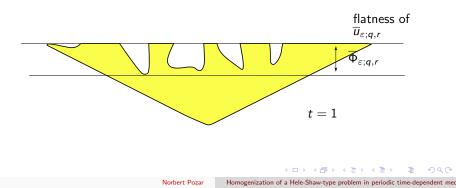


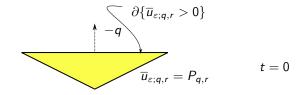
イボト イラト イラト

Flatness

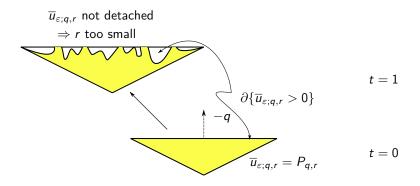
We introduce a new quantity: flatness of the solution

- measures how much the solution obstacle problem detaches from the obstacle
- indicator of how good our guess of r is for a given slope



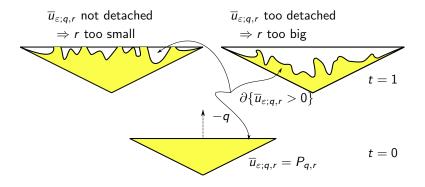


- (目) - (日) - (日)

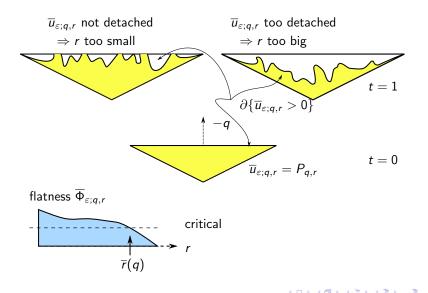


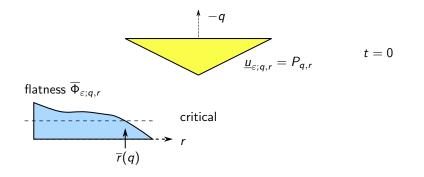
-

B b



★ Ξ > < Ξ >

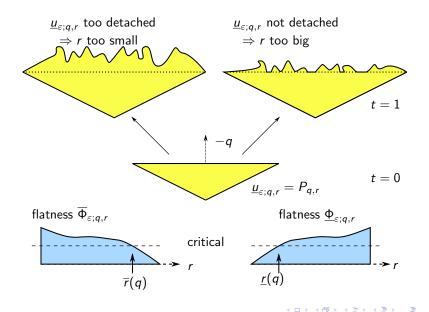




A 10

3 N

ヨート



Can the free boundaries of $\overline{u}_{\varepsilon;q,r}$ or $\underline{u}_{\varepsilon;q,r}$ have long thin fingers?

・ロト ・回ト ・ヨト ・ヨト

= 990

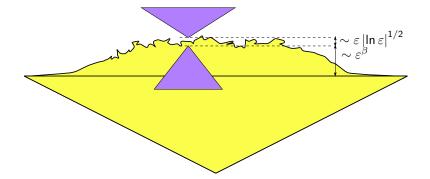
Can the free boundaries of $\overline{u}_{\varepsilon;q,r}$ or $\underline{u}_{\varepsilon;q,r}$ have long thin fingers?

Lemma (P. '12)

There exists K > 0, a constant independent of ε , such that for $\varepsilon > 0$ small the free boundaries of $\overline{u}_{\varepsilon;q,r}$ and $\underline{u}_{\varepsilon;q,r}$ are in between cones $K\varepsilon |\ln \varepsilon|^{1/2}$ apart.

(人間) 人 ヨト 人 ヨト

Cone flatness



<ロ> <同> <同> < 回> < 回>

We can compare solutions far away from the boundary for short time even if the boundary data is not ordered.

Lemma (Kim '07, P. '12)

Let $\beta \in (4/5, 1]$. Suppose that $r_1 > r_2 > 0$, a > 1 and $q \neq 0$ and that ε is sufficiently small. Then

$$\overline{u}_{\varepsilon;q,r_1}$$
 and $\underline{u}_{\varepsilon;aq,r_2}$

cannot be both ε^{β} -flat.

- 4 回 5 - 4 戸 5 - 4 戸 5

The critical value of flatness is

$$\overline{\Phi}_{\varepsilon;\boldsymbol{q},\boldsymbol{r}}\sim arepsilon^{eta}\sim \underline{\Phi}_{\varepsilon;\boldsymbol{q},\boldsymbol{r}}$$

for some fixed

 $\beta \in (4/5, 1).$

< 回 > < 三 > < 三 >

Flatness provides **two** candidates for the homogenized velocity r(q) for any $q \neq 0$:

• upper velocity

$$\underline{r}(q) = \sup\left\{r > 0 : \limsup_{\varepsilon \to 0} \varepsilon^{-eta} \underline{\Phi}_{\varepsilon;q,r} \ge 1
ight\}$$

lower velocity

$$\overline{r}(q) = \inf \left\{ r > 0 : \limsup_{\varepsilon o 0} \varepsilon^{-eta} \overline{\Phi}_{arepsilon;q,r} \geq 1
ight\}$$

< 同 > < 三 > < 三 >

Tools

Finally, prove that $\overline{r}(q)$ and $\underline{r}(q)$ have the desired properties using:

- scaling
- monotonicity (Birkhoff property)
- local comparison principle
- cone flatness

In particular,

(semi-continuity)

$$\overline{r}_* = \underline{r}, \qquad \overline{r} = \underline{r}^*$$

• (ellipticity) $\overline{r}(q) \leq \underline{r}(aq) \qquad orall q \in \mathbb{R}^n, a>1$

We set $r(q) = \overline{r}(q)$.

- ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ● ● ● ● ● ● ●

Tools

Finally, prove that $\overline{r}(q)$ and $\underline{r}(q)$ have the desired properties using:

- scaling
- monotonicity (Birkhoff property)
- local comparison principle
- cone flatness

In particular,

(semi-continuity)

$$\overline{r}_* = \underline{r}, \qquad \overline{r} = \underline{r}^*$$

• (ellipticity)

$$\overline{r}(q) \leq \underline{r}(aq) \qquad orall q \in \mathbb{R}^n, a>1$$

We set
$$r(q) = \overline{r}(q)$$
. $\Rightarrow u$ solves $\begin{cases} -\Delta u = 0 \\ V_{\nu} = r(Du) \end{cases}$

≡ nar

- continuity, Hölder regularity of r(q)?
- rate of convergence
- random environments (spatial or spatio-temporal): open
- extension to non-monotone problems: Hele-Shaw with mean curvature, contact angle dynamics etc.

- 4 同 2 4 日 2 4 日 2

Thank you!

・ロト ・四ト ・ヨト ・ヨト

2

The solutions of the obstacle problem has a natural monotonicity:

- *a* ∈ (0, 1)
- Hele-Shaw problem has natural hyperbolic scaling:

$$\underline{u}_{\varepsilon;q,r}\left(x,t\right)\mapsto a\underline{u}_{\varepsilon;q,r}\left(\frac{x}{a},\frac{t}{a}\right)$$

is solution of the obstacle problem with $\varepsilon' = a\varepsilon$ on $aQ_q \subset Q_q$. • $P_{q,r}$ is invariant

イロン 不同 とくほう イヨン

ъ.

The solutions of the obstacle problem has a natural monotonicity:

- *a* ∈ (0, 1)
- Hele-Shaw problem has natural hyperbolic scaling:

$$\underline{u}_{\varepsilon;q,r}\left(x,t\right)\mapsto a\underline{u}_{\varepsilon;q,r}\left(\frac{x}{a},\frac{t}{a}\right)$$

is solution of the obstacle problem with $\varepsilon' = a\varepsilon$ on $aQ_q \subset Q_q$.

- P_{q,r} is invariant
- Solution of the obstacle problem on a smaller domain is more "extreme"; therefore

$$a\underline{u}_{\varepsilon;q,r}\left(\frac{x}{a},\frac{t}{a}\right)\leq\underline{u}_{a\varepsilon;q,r}\left(x,t\right)$$

The solutions of the obstacle problem has a natural monotonicity:

- *a* ∈ (0, 1)
- Hele-Shaw problem has natural hyperbolic scaling:

$$\underline{u}_{\varepsilon;q,r}\left(x,t\right)\mapsto a\underline{u}_{\varepsilon;q,r}\left(\frac{x}{a},\frac{t}{a}\right)$$

is solution of the obstacle problem with $\varepsilon' = a\varepsilon$ on $aQ_q \subset Q_q$.

- *P_{q,r}* is invariant
- Solution of the obstacle problem on a smaller domain is more "extreme"; therefore

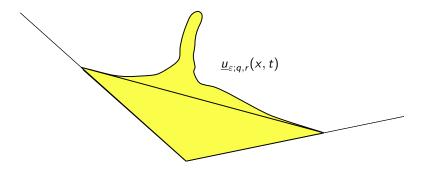
$$a\underline{u}_{\varepsilon;q,r}\left(\frac{x}{a},\frac{t}{a}\right)\leq\underline{u}_{a\varepsilon;q,r}\left(x,t
ight)$$

• By periodicity:

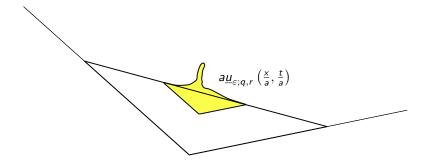
$$a\underline{u}_{\varepsilon;q,r}\left(\frac{x}{a},\frac{t}{a}\right) \leq \underline{u}_{a\varepsilon;q,r}\left(x-k,t-l\right) \qquad \text{for } (k,l) \in a\varepsilon(\mathbb{Z}^n \times \mathbb{Z})$$

as long as $aQ_q \subset Q_q + (k, l)$ and the obstacles are ordered.

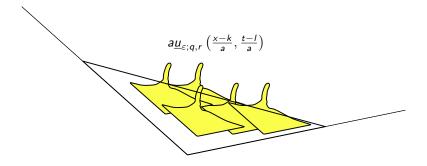
= nan



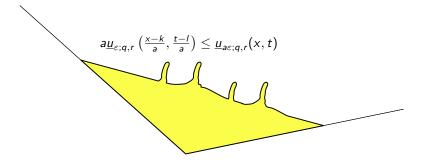
イロト イポト イヨト イヨト



<ロ> <同> <同> < 回> < 回>



イロン イボン イヨン イヨン



Monotonicity is also known as Birkhoff property.